Proving Monotone Convergence Theorem with Fatou’s Lemma

The statement of the Monotone Convergence Theorem reads:

Suppose that the set E is measurable, and let (f_n)_{n=1}^\infty be a sequence of non-negative, measurable functions such that, for x \in E,

0 \leq f_1(x) \leq f_2 (x) \leq \cdots

Let f be defined by f_n(x) \rightarrow f(x) as n \rightarrow \infty. Then,

\int_E f_n d\mu \rightarrow \int_E f d\mu, \quad (n \rightarrow \infty)

In this proof, Fatou’s lemma will be assumed.

Notice that \lim_{n\rightarrow \infty} f_n = f implies that

\int_E \lim_{n\rightarrow \infty } f_n = \int_E f

and so by Fatou’s lemma,

 \int_E \lim_{n\rightarrow \infty } f_n = \int_E f \leq \liminf_{n\rightarrow \infty} \int_E f, \quad (1)

for \lim_{n \rightarrow \infty } f_n = f = \liminf_{n \rightarrow \infty} f_n, \quad (2)

Now, since f_{n} \leq f_{n+1} \leq \cdots \leq f, for every intger n, and the f_n's are bound below by 0, we have

0 \leq \cdots \leq \int_E f_n  \leq \cdots \leq \int_E f, for every n \in \mathbb{N}. And so, taking the supremum for k \geq n and passing to the limit gets

\limsup_{n \rightarrow \infty} \int_E f_n \leq \int_E f, \quad (3).

Now, combining (3) with (1) and (2) yields:

\limsup_{n\rightarrow \infty } \int_E f_n \leq \int_E f = \int_E \liminf_{n\rightarrow \infty} f_n \leq \liminf_{n\rightarrow \infty} \int_E f_n

hence

\limsup_{n\rightarrow \infty} f_n d\mu \leq \int_E f d\mu \leq \liminf_{n\rightarrow \infty} \int_E f_n d\mu,

therefore

\lim_{n \rightarrow \infty} \int_E f_n d\mu = \int_E f d\mu

which proves everything that was promised.

Leave a comment